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\ ABSTRACT
Integral averages of weak subsolutions (and supersolutions) in R® of
quasilinear elliptic and parabolic equations are investigated. The important
feature is that these integral averages are defined in terms of measures that
reflect interesting geometric phenomena. Harnack type inequalities are

established in terms of these integral averages. A
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This report investigates some regularity properties of weak (non-

- i
SIGNIFICANCE AND EXPLANATION

classical) subsolutions of a wide class of quasilinear elliptic and parabolic

equations with discontinuous coefficients. The main thrust of the

investigation is focused on the classical concept of Lebesque point and the

related integral average of weak subsolutions. However, we deviate from the

classical context by employing integral averages that are defined in terms of

a general class of measures. As a particular consequence of the analysis,

Harnack type inequalities for weak subsolutions of elliptic equations are

. obtained that estimate the difference between the gupremum of a weak solution

in a solid ball in R"™ and its integral average over a sphere of suitable

lower dimension. 1In the case of parabolic equationsg, it is shown that the

supremum of a weak subsolution in a cylinder in R™'1  can be estimated in

terms of its integral average over the lateral boundary of a suitable

subcylinder.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




Mean Values of Subsolutions of Elliptic
and Parabolic Equations

William P, Ziemer

1. Introduction. In the theory of regularity of weak solu-

tions that arises in partial differential equations and the cal-
culus of variations, the analysis of the set of Lebesgue points
frequently plays an important role. A point Xy € R® is said

to be a Lebesgue point of a function u if there is a number
L = z(xo) such that

lim ¢~ luly) - 2(xy) {dy = 0 .

|

r+o B(x,,x)
Here B(xo,r) denotes the open ball of radius r centered at
Xy - If u 1is a weak solution of a partial differential equa-
tion, certain regularity properties of u often hold at its
Lebesgue points. In many instances it is necessary to investi-
gate the Lebesgue set and the associated integral averages of
weak subsolutions and supersolutions. Perhaps the best known
results in this connection are those that pertain to subharmonic
functions. These results state that if wu is subharmonic in
rR" , then u has the following sub mean-value properties:

u(xg) s (a(n)z") u(y)dy ,

-1
[B(xo,r)

-1 (
(1) ulxg) s (nandc™ | u(y)do (y)
3B(xo ' X)

where a(n) denotes the volume of the unit ball in R" . oOther
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results in this direction are the well known Harnack inequalities

for weak subsolutions and supersolutions of elliptic and parabolic

equations, [M]}, [T1], [T2].

In this paper we investigate integral averages of weak sub-
solutions of elliptic and parabolic quasilinear equations. This
work was motivated by [Z1] in which the analysis of Lebesgue
points of weak subsolutions of parabolic equations played a vital
role in determining the regularity properties of weak solutions
of a wide class of degenerate parabolic equations.

In 54 of this paper we consider weak subsolutions of equa-

tions of the form
(2) div A(x,u,ux) = B(x,u,ux)

where A and B are measurable functions subject to certain
structural inequalities, see (12) below. Because of this struc-
ture, it is natural to require that weak subsolutions of (2) lie

Wl'p . Our results for weak subsolutions

in the Sobolev space
u of (2) are somewhat analogous to (1) in that we relate sup u
in B(xo,r) to the integral average of u over an (n-k)-sphere
of radius r and center Xy s where 1 < k < p . This is a
special case of the main result which allows consideration of
integral averages of subsolutions that are defined in terms of
certain non-negative measures, (Theorem 4.6). Of course, similar
results are valid for weak supersolutions. 1In §3, we consider

u e wl,p without assuming that u 1is a subsolution of (2) and

show that the integral averages, that are defined relative to

certain measures, converge everywhere to u exceot possibly on

a set whose dimension is n - p .




In §5 we consider weak subsolutions of parabolic equations
of the form

(3) = div A(x,t,u,ux) + B(x,t,u,ux) .

Y
We establish results which are analogous to those obtained in the
elliptic case. In particular we show that the supremum of a weak
subsolution of (3) in a cylinder of radius r in Rp+1 can be
estimated by its integral average over the lateral boundary of a
suitable subcylinder plus an error term that tends to 0 as

r » 0 . Other results of a similar nature can be obtained in which
the lateral boundary of the subcylinder can be replaced by other
geometric objects of dimension n .

The author would like to thank Michael Crandall for several

interesting and helpful discussions during the preparation of

this paper.

2. Notation and Preliminaries.

Points in Euclidean n-space, R" . Will be denoted by
X = (xl, xz,...,xn) . In the case of a context for parabolic

equations, points in Rn+1 will generally be denoted by

z = (x,t) where x ¢ R" and t ¢ R1 . We will denote k-dimen-
sional Hausdorff measure by Hk . Thus, Hl is linear measure
and H" defined on subsets of R" is Lebesgue measure, c.f. (F].

The Lebesgue measure of a set E ¢ R® is denoted by |E! and

(
J u(y)du(y) will stand for the integral average
E

ol . . .
u (E) } u(y)du(y) , where 1 1is a non-negative Radon mcasure with
'E
u(E) # 0 . For o an open subset of N ’ wl,p s *5>p = 1 , will




denote the Sobolev space of functions whose distrioutional first
derivatives are functions that belong to the Lebesgue space
Lp(n) . wé'p(g) will denote the closure in the Sobolev norm of
smooth functions with supports contained in { . Througnout,

p* = np/n-p will denote the Sobolev exponent and p' = p/p-1 ,
for 1 < pP<n. rollowing common practice, the letter C will

denote a constant that may change from line to line in the same

proof.

3. Mean Values of Sobolev Functions.
R —

Whenever E c R we define, for 1l < p < n ,

= inf{[qulp}

Yp

where the infimum is taken over all non-negative functions

u e wl,p(Rn) for which E c¢ interior {x : u(x) 2 1} . 1In tne
case p> n , the definition must be modified to reguire that
the functions u ¢ wl,p(Rn) have supports contained in some
fixed compact set. It is known, c.f., [FZ], that if 1 < p =< n

then

¥p(E) implies H" P*®(E) = 0 for each . > 0

Hn-p(E) < w implies YP(E) =

’




.0

In the event that p = 1 , then yl(E) = 0 if and only if

B L(g) =0, [FL].

3.1 Definition. The Lebesgue set of degree s for a

Lebesgue measurable function u is the set of all points x ¢ R®
such that

n

lim ¢~ luly) - u(x)|Sdy = 0 .

r+0 JB(x,r)

Here B(x,r) denotes the open ball of radius r and center x .

The exceptional set of degree s for u is the complement in

" of the Lebesgue set of degree s for u .

It follows from classical differentiation theory that in
case u ¢ Ls(Rn) , the exceptional set of degree s for u nas
Lebesgue measure 0 . However, in case u € wl'p(Rn) the ex-~
ceptional set is considerably smaller. Indeed, we have the fol-
lowing, vide [FZ;5§9]:

1

3.2 Theorem. For every u e¢ W 'p(Rn) sy 1 £ p <n , there

-
1

exists a function v ¢ W

,p(Rn) such that u =v a.e. in &"

and the exceptional set of degree p* for v has Yp capacity

0 , where p* - np/n-p .
In particular, this results implies that the integral aver-
ages of u converge at all points of R} except perhaps those

that belong to a set of yp capacity 0 ; that is

(5) lim u(y)dy = u(x)
r:0 }B(x,r)




for all x ¢ R® - E , where vp(E) = 0 . The purpose of this

section is to show that the integral average taken with respect
to Lebesgue measure in (5) can be replaced by an average relative
to a2 more general measure.

For this purpose we introduce the space of Bessel potentials
gl*f . £ o« Lp(Rn) , P > 1 where the Fourier transform of 9,

2|x|2)°;"‘. The space of Bessel poten-

1

is given by Gl(x) = (1 +4n
tials g *f , £ ¢ tP(R") is identical to W 'P(R™) , 1 <p <= .
The Bessel kernel 9, is comparable to the Riesz kernel

R, (x) = Ix]l_n in a neighborhood of |x]| = 0 and has exponen-

tial decrease as |x| > « . Moreover, g, (x) s clxll-n for

some constant C .

3.3 Definition. For each real number 1l < a < n , let M;
denote the space of non-negative Radon measures m on R? with
compact support which for some constant M , satisfy the growth
condition

n-oa
m(Br) < Mr

on open n-balls of radius r .
If p>1 and m is a non-negative Radon measure such that
llql*nqle.(Rp) < » , where p' = p/p-1 , then clearly
m e [Wl'p(Rn)]* . the dual of Wl'p(Rn) . To see this, let
u < wl'p(Rn) be written as u = g,*f , f ¢ LP(R") . Then, by

changing the order of integration, we have




[ T

s “gl*m“pv "f“p <®

and thus, J udm defines a bounded linear form on Wl'p(Rp)

Again, by changing the order of integration, we have
P’ 1/p-1
[(gl*m) dx = J gl*(gl*m) am .
Therefore, by appealing to Theorems 3.3 and 3.5 of {aM}, it fol-

lows that if p>1,1sa<p and me ' , then m ¢ (WP (R 1% .

In case p =1 , it follows from Theorem 4.7 of [MZ] that

+
l -
(Mz] thus yield the following.

m e [wl'l(R?)]* if meM The main results of [M] and

3.4 Theorem. Let @ < R® be a bounded Lipschitz domain

and suppose l1sp<n. Lt m bea non-negative Radom measure
supported on Q with m e MI if p=1 and me M: if 1 o <pP.

There is a constant C = c(qa,n,p,M) such that if u ¢ wl'p(n) R

then

L 4 *
( tuen - [ uan|®* an 27" < e 1walHP .
Q
Thigs result will be crucial in establishing (S) where Lebesgue’
measure in the integral average is replaced by m ¢ M: .

I£ u e wl,p(np) , define a measure vy, by

£ A i A ] e "B =

TR mprray .
o L T A~

4




pisiont-gochlil

i
H
;

vy (E) = fE l7a|Pax .

whenever E 1is a measurable subset of Rn .

Let

P =R® n (x : lim sup r

n=p r+0

PRy [B(x,1)] > 0) .

3.5 Lemma. If ue w 'PR® , 1<p <n, then
=TS 0 ————

-p -
H (B_p) =0 .

n

Proof: Let Ak =R n (x : lig*sup P yu[B(x,r] > k-l}

for each positive integer k . It follows from [F;§2.10.19]

that there is a constant C such that
n-=p
H (Ak) < Ck Yu(Ak) .

Note that Yu is absolutely continuous with respect to Lebesgue {

measure. Now yu[Ak] < o, Hn-p(Ak)< © Hn(Ak) =0,

Y (R) =0 and Hn-l(Ak) =0 . Hence Hn-p(Pn_p) =0

" ST RS

because Pn-p = VA .

Let Xq X Pn-p and consider B(xo,l) . If u e wl’p(Rn) '

l<p<n, and if m is a measure satifying the hypothese of

ST

o e

Theorem 3.4 where we set Q = B(xo,l) , then

f
6)  ( lu(y) - f udm [P* ay) 1/P* ¢ C(f |vu |P)L/P
B(xo,l) B(xo,l)




Let Tr : B(xo,l) > B(xo,r) be defined by Tr(x0+y) = X, +ry
$ where y ¢ B(0,1) . If we define u. = ueT , then (6) implies
that
f * *
([ jug(y) - | uer am| P*ay) 1/P* < c(f |Vur|P)l/P X
, B(xo,l) B(xo,l)
which is the same as
-n [ *
(7) (™ luly) - J ue T dm IP* dy)l/p
B(xo,r)
- r
s c(eP™ J IVulp)l/p .
B(xo,r)
Because x, L3 Pn-p » the right side of (7) tends to 0 as r + 0 .

From Theorem 2.2, there is a set E with Yp(E) = 0 such that

(8) lim ¢ u(y) - u(xo)lp*dy =0

i
r+0 ’B(xg,x)

whenever Xq X E . Note that (4) and Lemma 3.5 imply yp(Pn_p)==0.
Now by setting A = E v Pn—p  the following result follows from

(7) and (8).

3.6 Theorem. Suppose u ¢ wl'p(Rn) , L < p <n . There is

a set Ac R? with Yp(A) = 0 such that if X, A and m

1
n

-+

a_non-negative Radon measure supported on §(xo,l) with m e M

if p=1 and mem;‘ if 1 s a <p , then

(92) limjuoT dm = u(x,.) .
rQ r 0




Of course, the most interesting measures to consider are

those that passess some homogeneity properties. For example,

n-1

if m=H aB(xO,l) . then clearly m ¢ MI and

f‘“Trdm = f alyyar™ iy .
aB(xo,r)

Thus, we have

3.7 Corollary. If u ¢ Wl’l(Rn) there is a set A with

vy (&) = #"1(a) = 0 such that

lin / uy)a ) = uix,)

r+0 JaB(xo,r)

whenever Xy X A .

A similar result could be obtained by taking

m= g1 nn_l(xo) where nn_l(xo) is an (n~1l)-dimensional

plane passing through xo'. In the event that u ¢ wl'p(Rn) '

l1<p<n, let m=pu"rR Sn-k(xo,l) where 1 < k <p is an

n-k

integer and Sn-k(xo,l) is an §' “sphere with radius 1 centered

at x0 . Then we have

(10) lim f’ u(y)aH" ™ (y) = u(x,)
Sn-k(xo.r)

for Yp - g.e. X, ¢ R? . As in the case p =1 , a similar re-

sult follows by taking m = "% 1‘n-k(xo) .
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4. Lebesgue points of subsolutions of elliptic equations

In this section we obtain results for weak subsolutions and
supersolutions of guasilinear elliptic equations with measurable
coefficients that are analogous to Theorem 3.6 and its corollaries.
In the case of weak subsolutions we will show that (9) holds at
all points Xq and more importantly, that the sup u in B(xo,r)
is bounded above by the left hand side of (9) plus a term that
tends to 0 as r ¢+ 0 .

The equations that are considered in this section are of the

form
(11) daiv A(x,u,ux) = B(x,u,ux)

where A and B are, respectively, vector and scalar valued

Baire functions defined on g «x R1 x R® . Here Q is an open

subset of R" . The function A and B are required to satisfy

the following structural inequalities:

p-1 p-1
|A(x,u,w)| < aj|w| + ay |u] + a,

(12) IB(x,u,w)| < b, [w|P + b, |w|P + b |ulP? +bp
0 1 2 3
A(x,u,w)+ w 2 ]wlp - Cllulp -C, .

We assume 1 < p < n , and ag b0 are non-negative constants.
The results below are valid if the remaining coefficients are

non-negative measurable functions that are assumed to lie in

-11—

e vt R s e g 27 Y o




ke

ot

appropriate Lq(n) spaces, vide [GZ], but to minimize technical
detail, we will assume that the coefficients are bounded by some

constant K > 0 :

(13) ai(x) < K, bi(x) < K, ci(x) < K.

A function u € Wiég(ﬂ) is called a weak subsolution (supersolu-

tion) of (11) if

(14) J A(x,u,ux)~ Vo + B(x,u,ux)¢ < 0 (z9)
Q
for all bounded 20 , ¢ ¢ W3'P(@) .

The following result is due to Trudinger [Tl] whose proof is
based on the familiar Moser iteration method, [M]. Therefore, a
complete proof will not be given; however, for the convenience
of the reader, we will give an outline and provide the main steps
of the proof.

Let u e wiég(ﬂ) be a weak subsolution of (ll) that is

bounded above by L in @ . Choose X, € 0 and for each real

number k , let u (u-k)*  and define

k

uk(r) = sup {uk(x) : X € B(xo,r)} ,
(15)

u(r) sup {u(x) : x ¢ B(xo,r)} .

4.1 Theorem. Let u ¢ wiég(n) r 1< p < n, be a weak sub-

solution of (11) such that 0 s u(x) s L for eaciih x ¢ > . There

is a constant C depending only on L , n , p and the structure

A T

TR T




(12) such that if B(xo,r) c @ , then

(f ) = wNYY < clutm) = ulx/2) + a(x)]
B(x0,7r/8)

where a(r) = r + kr + (x0)P/P7h  and vy < n(p-1)/(n-p) .

Proof: Let

-bou

(16) ¢ = nPe (u(x) + a(x) - w®

where n ¢ C;[B(xo,r)] and o < 0 . Then ¢ is a bounded, non-

negative test function that can be employed in (14). If we set
v=yu(r) + a(r) = u

the structure (12) and elementary estimates yield

f poa=1, P P P, Pta+l
(17) J v |vv]® < Cla) J(n + |vn|T)v
where C(a) is a finite constant when a is bounded away from
0 and 1 - p. Let w= v®  where pg =p +a -1 and apply
Sobolev's inequality to find that (17) yields

(18) inwlly, s Cleolltn + [vnhywil

where o =n/n-p . For 0 <8 <t sr, let n ¢ C;[B(xo,t)] be

1 on B(xo.s) and |vnls 2(t~.~s)-1 .

such that 0 € ns 1, n

Then (18) implies




(19)

£ C(a) (t-s)-mwllp;t

1901 506

Let ry = r(27! 4+ 27372 gor j=0,1,..., and iterate inequality

(19) to obtain for any Py > 0

(20)

where

8(-=,r/2) 2 Ce(-py,3r/4)

8 (p,r) = ( VP /P
B(xo,r)

By performing a finite iteration of (19) and choosing the r_. in

J

a different way, we have

(21)

8(vy,7x/8) s Ce(po,3r/4)

for any Py > 0 and Y < n(p-1)/(n-p) . Return now to the de-

finition of the test function ¢ and notice that in case a= -1 ,

substitution of ¢ into (14) gives

c.f.

JnPIVlOgVIP SCJ |vn| P

whenever n ¢ CB[B(xo,r)] . Thus, from the John~Nirenberg lemma,

(GT, p.158], it follows that there exist constants C and

Pg > 0 such that

~P P
v 0 I 0 csZn

| "
B(xo'S) B(xols)

.14.




for 0 <8 g 3r/4 . That is,

(22) 9(pg3r/4) < 6(=py,3z/4) .

Thus, (20), (21) and (22) imply

8(y,7x/8) < Co(~=,x/2)

or

(} [ulr) + a(r) - A (Jf vt/
B(x0,7r/8) B(x0,7r/8)
< C min v = Clu(r) - u(x/2) + a(xr)) .
B(xo,r/Z)

4,2 Remark. Note that the right hand side of the inequality

in Theorem 4.1 tends to 0 with r and therefore

lim 4 u(y)dy = 1lim u(r) = lim sup u(x) .
ry0 B(xo,r) r+Q XX,

This implies that every bounded weak subsolution of (ll) is upper

semicontinuous on g after redefinition on a set of measure 0 .

If by =20 in the structure (12), then the same conclusion
will hold without assuming that u is bounded on & . In this
case it is possible to show that a weak subsolution u ¢ wiég(n)
is locally bounded above on f , [SE], On the other hand, u is
not necessarily bounded below and therefore, the estimate in

Theorem 3.1 may not hold. However, one can easily show that for




each k e Rl R

lim

lu (g) =u |Y =0 .
r+0 {B(x0,7r/8) k k

rvr-poen

To see this, replace u by Uy and u(r) by uk(r) in the

definition of ¢ , (16), and observe that the proof of Theorem

)

3.1 yields

(23) ({ |uk(r)"ukly)l/YSC(k)[uk(r)-uk(r/2)-*a(r)]
B(xo,7r/8)

Let A(xo) = lim u(r) and choose k < A(xo) . Then
r+0

m (xr) = u_ 2 (AM(x,) - k)|B(x, , 7r/8) n {u < k}|
; IB(xo,7r/8) k k 0 0

. and thus, it follows from (23) that

lim r'“ls(xo , £) n {u <k} =0
r+0

W T et Y} TS P W ey Sty pL % 2 - oy

Therefore, for each ¢ > 0

| lim r-nlB(xo » X) o {x : |u(x) - A(xo)l > e}l =0 .
' r+0

This states that u is approximately continuous at x and that

0
1 its approximate limit at Xq is A(xo) . However, every measur-
|

able function is approximately continuous almost everywhere and

therefore, every weak subsolution of (11) with by =0 in (12)

i -16-




is upper semicontinuous on f after redefinition on a set of

measure 0.

We will now show that (9) holds at all Xq € Q@ if u is a

subsolution of (11l).

4.3 Therocem. Let u ¢ Wiég(n) + 1 <p <n , be a weak sub-

solution of (ll) such that 0 < u(x) s L. for each x ¢ ¢ . For
. +
,! each Xg € 2 with B(xo,ro) c @ for some ry > 0 , let m e Mcl '

l1<sa<p, be a Radon measure supported on E(xo,ro/Z) .  There

is a constant C depending only on M , L , n , p and the struc-

ture {(12) such that

i (24) ( law) = [ w o 7, am(P* ay) M/P*
] . B(xofr)

s Clu(r) - w(r/2) + a(r)]P71/P

ViR b 9 e Y e,

for each r < ro/2 where Tr : B(xo,ro/z) -+ B(xo,r/Z) is

I o ey A nrgm

defined by Tr(x0-+y) = X, + r/roy .

Proof. We proceed to obtain an estimate of f |Vu|2
B(x,r) '

4 Ve

as in [G2]. Let n « c;[a(x0,7r/e)1 be a cut-off function such

bou
that n =1 on B(xo,r/z) and let ¢ = np e . Hence, by

v e 4

substituting ¢ into (14) and utilizing the structure (12), it

PR

follows that there is a constant C such that

«l7=




e ey - s s R AT .10 it . Sl A

As in the proof of Theorem 4.1, let v = p(r) - u + a(r) and use

(17) and Theorem 4.1 to obtain, for sufficiently small ¢ > 0

(26) I np-l[Vulp-lanl = I (nP'lv-(l+€)/P'|Vu|P-l)(v(1+e)/P',Vn|)

< (I npv-(1+e)le|p)p-l/p ([ v(p-l)(1+e)|vﬂ|p)1/9
(Lu(r) - w(r/2) + a(r)) (P~1) (1+e) | n-p,1/p
s C(lu(r) - u(r/2) + a(r)) (P717¢) n-p)P-1/p %
§
(lu(r) - u(r/2) - a(r))P~1)(1%e) n-p,1/p
< Cly(r) - u(r/2) + a(r)]P~i""P |

Also, the last term in (25) can be written as
I oP|vu|Pl = J (n]vu])P 14
s % j nPlva|P 4 ¢ I nP |

Hence, it follows from (25) and (26) that

«]18-




P J lvu|P < clu(r) - w(x/2) + a(r)]P'l
B(xo,r/Z)

Now apply Theorem 3.4 as in the proof of (7) to establish the con-
clusion.
Because the right hand side of (24) tends to 0 as r + 0 ,

the following is immediate.

1l,p . .
4.4 Corollary. If u e Wy "(2) is bounded subsolution of

(11) on @ , then

lim I u e Trdm = u(x

)
- r+0 0

for each Xq € Q .

n-k ' sn-

4.5 Remark. As in (10), if we let m = H k(xo,ro/z) ,

we have for each xo € Q

R e Y e et e v

Lim | u(y)aE" ¥ (y) = u(xy)
r+0 sn°k(xo,r)

whenever k 1is an integer such that 1 < k < p . A similar
result holds if m is taken as the restriction of Hn-k to an
{n-k)-plane passing through Xq -

Finally, we establish an inequality for weak subsolutions of
(11) which is reminiscent of the weak Harnack inequalities proved

in (T1] .

-~ s oo
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4.6 Theorem. Let u ¢ wl'p(o) r 1 <p <n, be a weak sub-

loc

solution of (1l1) and assume that 0 < u < L on § . For each

X €

0

Q with B(xo,ro) c @ for some ro > 0 , there is a non-

negative function g(r) with

such

for

for,

p' dr _ _
Io g(r) = <

that
n-k
supu s J u(y)dH (y) + g(r)
-l
B(XO'r) Sn ’((xotr)
0 <r < ro/z . Here k is an integer such that 1 < k < p .

Proof. This follows immediately from Theorem 4.1 and (24)

setting c(r) = I u(y)dHn-k(y) , We have
s"’k(xor)
p({r) - c(r) = J p(r) - c(r)
B(x0,7r/8)
: | uery - uf + | lu - c(x) |
B(xo,7r/8) B(x0,7r/8)

Now

A

Clu(r) - w(r/2) + a(r)1P"V/P |

Clu(r) - u(r/2) + a(r)]p-l/p and the conclusion

set g(r)

follows.

5.

Parabolic Equations. In this section we consider parabolic

equations of the form

-20-
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(27) u, = div A(x,t,u,ux) + B(x,t,u,ux)

t

where A and B are Baire functions defined on QT x R1 x R .

Here 0, = Q x (0,T) where @ is an open subset of rR" .
The structure imposed on A and B is similar to that con-

sidered in the elliptic case, (12):

|A(x,t,u,w)| < aolwl + allul + a,

(28) |B(x,t,u.w) ]| s bolwlz + bylw| + b,lul + by
A(x,t,u,W) * w2 lw\2 - cl|u|2 -c, .

and b, are non-negative constants and the remaining coef-

20 0
ficients are required to lie in appropriate Lebesgue spaces, c.f.,

(LsU], [T2]), but as in §4, for simplicity of exposition, we will

e

assume that all coefficients are bounded by some constant XK > 0 .

A function u ¢ Wiéz(n is called a weak subsolution (super-

)

solution) of (27) if
(29) [ - u¢t + A V- B g0 (20)

for all bounded ¢ 2 0 , ¢ ¢ Wy'2(ay) .

The object of this section is to establish results for sub-
solutions of (27) analogous to those in Theorems 4.3 and 4.6. For
this purpose we consider an arbitrary point zo € QT . and for con-

venience, set 2 = (0,0) . We shall utilize space-time cylinders

0
of the follwoing form:

e

«2le
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R(x) = B(r) x (alrz,azrz)
R (r) = B(ar) x (t1r2,12r2)
R*(r) = B(Br) x (olrz.pzrz)

where B(r) denotes the n-ball of radius r and center xo =0
and where i
0 < 8<a<1l,
(30)
9 <Py <Py <Pz <0 <o <o,
Note that
N -
(31) R(r/27) < R (r)

1,2

for some integer N . Finally, for u ¢ wloc

(QT) a subsolution

of (27), let

u(r) = sup{u(z) : z ¢ R(r)} .

The following result is proved in [T2] and its proof runs parallel

to that of the elliptic version in Theorem 4.1.

1,2
loc

{27) such that 0 < u(z) s I. for each 2 ¢ 0

5.1 Theorem. Let u ¢ W

(QT) be a weak subsolution of

o There is a




e mion mnimt. g

O

number vy > 1 and a c~aistant € depending onlyon L , n , and

the structure (28) and (30) such that if R(r) c QT , then

(} fu(x) - ulY)llY s C min [u(r) - u + a(r)]
Jre (x) R™(x)

where a(r) = r + Kr .

We now will establish an estimate on the growth of Vz-norm
of u(r) - u where u is a weak subsolution of (27). This
estimate is similar to the one that appears in [Z2, Theorem 4.3]
and is the parabolic analogue of the estimate that appears in
Theorem 4.3 above.

For this purpose let u be a bounded, non-negative weak

subsolution of (27) and let
(32) ¢ = n“ue

where n is a smooth cut-off function that will be specified

below. Because u is assumed to be bounded, we may assume that
the terms involving a1|u| ' bzlul , and cl]ulz in (28) can be
respectively. Therefore, substi-

absorbed in a2 . b and ¢

3 2
tution of (32) into (29) yields

b,u b u
(33) JI nzeouut+JJ nzeo (1+bou)(|vu|2 -cz)

bou
< fj 2nu e 7 (ag|vu| + a,1|7n]

b,u
+ [J n2 e “[b0|V“|2 + bllvu| + b,)

.23-




Now let v = u(r) - u (for simplicity we will write o = u{r) )

and define

b.u b.u
_ =1 0 -1 _ - w1 0 -1 _
(34) f({u) = bo (b0 u) b0 e (b0 u) .
Then,
bou

(35) f'(u) = ~u e .

. bou

£"(u) = -e (1 + bou) '

2 bou
(™ - u”) < f(u) s v e (b -u) for 0 < us

There is a constant C such that (33) can be written as

2 of (u) I 2 (2
(36) JI nt -t I n“|vu|
[ 2 ( 2 4
3 C[.I nivaljvnl + [j nc + II njvn] + IJ n“|vuil

The constant C depends upon the structure (28) and the bound

for Ju| . Now define
R'(r) = R¥*(yr)

where 0 <y <1 and choose n so that r =1 on R'(r) and

2

spt n ¢ R*(r) . Refer to (30) and set t, = plrz and t, = o,r

2 7P,

Choose t* ¢ (tl'tz) so that

«24-
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[ nz(x,t*)fz(x,t*)dx > % sup ( nz(x,t)fz(x,t)dx .
! (ty.t5)

I1f we replace t' by t* in (36), we are led to the following

estimate:

(37) sup J [nf(x,t)]zdx + II nlevlzdxdt

. < CIJI njvul]vn| + ff n? + JJ n|vn|
g' + ]J n?|vu| + IJ nin £ .

We now proceed exactly as in the proof of Theorem 4.3 above to

estimate the rate at which the right-side of (37) tends to 0.
Indeed, by employing (31) and Theorem 5.1, we find that there is
a constant C depending only on the given data such that the

first four terms on the right-side of (37) are bounded by
(38) ¢ Pur) - w(x/2%) + atx)) .

Refer to (35) to find that |f(u)]| s Cllvl and therefore, by

using Theorem 5.1 again, we have

(39) II n!ntlif(U)i s C ™ {ulr) - wizs2Yy + a(o)] .

Referring again to (35), the following lemma now follows from

(37), (38) and (39).




1,2
loc

weak subsolution of (27). Then,

5.2 Lemma. Let ue W (QT) be a bounded, non-negative
===

sup J [u(r) - u]zdx + II |Vu|2dxdt
(t;,ty) 'B@yr) R'(r)

< ¢ ur) - wie/2Y) + a(o))

whenever R(r) c QT .

We are now in a position to establish the parabolic analogue
of Theorem 4.3. This result is concerned with the behavior of a

weak subsolution in a neighborhood of an arbitrary point 2Z, ¢

0 T
We will continue to assume that Zo = (0,0) and the geometric
configuration imposed by (30).
5.3 Theorem. Let u ¢ Wiéi(nT) be a bounded, non-negative

Q

weak subsolution of (27). For each 2 with Rz (ro) cQ

0
+
for some ro >0, let m e Mcl + 1 < a <2 , be a Radon measure

g € ¥p T

supported on §(Byro) x {t} . There is a constant C depending

only on the bound for u and the given data such that

vtz
} f lu(x,t) - J u e T_(y,t) dm(y) | axae
yt, ‘BByr)

s clulr) = u(x/2V) + a(n)]

for each r ¢ I, where Tr s B(syro) x {t} » BByr) x {t} ig

defined by Tr(x,t) = (r/rox,t) .

e i el




L e s i AR

g

1'2
loc

concerning Sobolev functions that wu(-,t) ¢ Wiég(a x {t}) for

Proof. Because u ¢ W (QT) , it is an elementary fact

a.e.t. For all such t apply Theorem 3.4 to obtain

f lutx,t) - I e T, (y,t) dm(y) |® ax
B(Bvyr)

<c2™® J |Vu(x,t)|2 dx .
BBvyr)

Now integrating with respect to t from ytl = vplrz to

Ytz = szrz and applying Lemma 5.2 yields the desired result.

5.4 Corollary. For each Z0 € Q with Rz

T T

0
some r, > 0 , there is a non-negative function g(r) with

jo g(n? & <

such that
Yt

2
supu s j u e Tr(y,t)dm(y)dt + g(r)
R(r) ytl

for 0 <r <r

0 .

Proo<. From Theorems 5.1 and 5.3, it follows that

.27.

(ro) c Q £g£




| 3
Yt
2 2
[u(x) =~ J u o Tr(y,t)dm(y)] dt
b Yt1
Yt
2 2
= f % [u(r) - J u o Tr(y,t)dm(y)] dxdt
Yty B(Bvyr)
) Yt2
s C ff {ul{r) - u]® + C f f
R' (r) Tty BByr)
[u(x,t) - J u o Tr(y,t)dm(y)lzdxdt
s Clu(x) - w(x/2Y) + a(o ] .
Thus,
Yt2
(u(r) - I u o Tr(y,t)dm(y)]dt
Ytl

s Clu(r) - u(r/2N) + a(r)l* .

-

e e e e e~y ey

The result now follows if we set

g(xr) = Clulr) - u(x/2%) + a(x)1 .

As in §4, the most interesting case to consider is when the
measure m is taken as a geometric measure with certain homo-
geniety properties. For example, let

Hn-l l sn-l

ms= (xo,3yro) x {t}

Then,




I u e T!.‘ (Y:t) dm(Y) - J u(Ylt)dHn-l(y)
1 P74 (%8 vr) x(t)
and therefore
ytz Yt2 -1
' J u o Tr(y,t)dm(y)dt = * u(y,t)dH (y)
vty \AS1 S"‘l(xo.evr)x{t}

u(z)an®(z) ’z

fa*n'(r)

where 23*R'(r) denotes the lateral boundary of the cylinder
R'(r) .

We have thus proved

5.5 Corollary. For each 2, ¢ Q

0 with Rz (ro) cQ for

0 T

;j some r, > 0 , there is a non-negative function g(r) with

T

2 dr
Io g(r) —r < @
such that

supu < u(z)du™(z) + g(r)

R(r) }a*R'(r)

for 0 < r s ro

As in §3 and §4, one could establish similar results by
making different selections for the measure m . For example, in
addition to the choice made in the above corollary, one could

’ also take m = "1 | n“fl(xo) x {t} where 1! is an (n-1)-

plane that is orthogonal to the t-axis.

-
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